PER1 report

I. Expression across cell types

II. Expression across tissues

III. Associated gene sets

GO_0009649Biological processentrainment of circadian clock
GO_0002028Biological processregulation of sodium ion transport
GO_2000323Biological processnegative regulation of glucocorticoid receptor signaling pathway
GO_0010608Biological processpost-transcriptional regulation of gene expression
GO_0000122Biological processnegative regulation of transcription by RNA polymerase II
GO_0006338Biological processchromatin remodeling
GO_0032922Biological processcircadian regulation of gene expression
GO_0007623Biological processcircadian rhythm
GO_0042752Biological processregulation of circadian rhythm
GO_0051591Biological processresponse to cAMP
GO_1900015Biological processregulation of cytokine production involved in inflammatory response
GO_0046329Biological processnegative regulation of JNK cascade
GO_0042634Biological processregulation of hair cycle
GO_1900744Biological processregulation of p38MAPK cascade
GO_0097167Biological processcircadian regulation of translation
GO_0043153Biological processentrainment of circadian clock by photoperiod
GO_0045892Biological processnegative regulation of DNA-templated transcription
GO_0043124Biological processnegative regulation of canonical NF-kappaB signal transduction
GO_0045944Biological processpositive regulation of transcription by RNA polymerase II
GO_0005654Cellular componentnucleoplasm
GO_0005829Cellular componentcytosol
GO_0005737Cellular componentcytoplasm
GO_0005634Cellular componentnucleus
GO_0000978Molecular functionRNA polymerase II cis-regulatory region sequence-specific DNA binding
GO_0140297Molecular functionDNA-binding transcription factor binding
GO_0000976Molecular functiontranscription cis-regulatory region binding
GO_0019900Molecular functionkinase binding
GO_0001222Molecular functiontranscription corepressor binding
GO_0031625Molecular functionubiquitin protein ligase binding
GO_0031490Molecular functionchromatin DNA binding
GO_0070888Molecular functionE-box binding
GO_0005515Molecular functionprotein binding

IV. Literature review

[source]
Gene namePER1
Protein namePeriod circadian regulator 1
PER1 protein
PER1
Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui)
Period 1
Period circadian regulator 1 (Period homolog 1 (Drosophila), isoform CRA_b)
SynonymsPER
KIAA0482
hCG_31279
RIGUI
DescriptionFUNCTION: Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. .

AccessionsENST00000583559.1
J3QLQ5
J3QL46
ENST00000582719.5
ENST00000317276.9 [O15534-1]
O15534
ENST00000581395.5
ENST00000581703.1
J3QL55
ENST00000584202.1
Q9H2D0
J3KSL6
J3KTM2
ENST00000581082.5
ENST00000354903.9 [O15534-4]
J3KRL7
J3QSH9
Q6IN51
A2I2P6
ENST00000577253.5