Name | Number of supported studies | Average coverage | |
---|---|---|---|
epithelial cell | 6 studies | 27% ± 10% | |
dendritic cell | 3 studies | 22% ± 1% |
Insufficient scRNA-seq data for expression of MLST8 at tissue level.
Tissue | GTEx Coverage | GTEx Average TPM | GTEx Number of samples | TCGA Coverage | TCGA Average TPM | TCGA Number of samples |
---|---|---|---|---|---|---|
brain | 100% | 3364.52 | 2642 / 2642 | 100% | 55.31 | 705 / 705 |
esophagus | 100% | 1733.84 | 1445 / 1445 | 100% | 24.15 | 183 / 183 |
ovary | 100% | 1902.25 | 180 / 180 | 100% | 43.25 | 430 / 430 |
pancreas | 100% | 1877.60 | 328 / 328 | 100% | 26.90 | 178 / 178 |
thymus | 100% | 2634.19 | 653 / 653 | 100% | 39.21 | 604 / 605 |
liver | 100% | 1537.33 | 226 / 226 | 100% | 23.27 | 404 / 406 |
stomach | 100% | 1676.56 | 359 / 359 | 99% | 34.91 | 284 / 286 |
prostate | 100% | 2311.02 | 245 / 245 | 99% | 47.30 | 498 / 502 |
skin | 100% | 2278.61 | 1809 / 1809 | 99% | 50.12 | 468 / 472 |
adrenal gland | 100% | 2677.90 | 258 / 258 | 99% | 34.02 | 228 / 230 |
uterus | 100% | 1796.11 | 170 / 170 | 99% | 35.61 | 455 / 459 |
kidney | 100% | 2154.99 | 89 / 89 | 99% | 31.03 | 892 / 901 |
intestine | 100% | 1758.07 | 966 / 966 | 99% | 41.20 | 521 / 527 |
breast | 100% | 1879.51 | 459 / 459 | 98% | 38.99 | 1099 / 1118 |
bladder | 100% | 1778.86 | 21 / 21 | 97% | 33.92 | 491 / 504 |
lung | 99% | 1587.21 | 572 / 578 | 98% | 29.97 | 1134 / 1155 |
adipose | 100% | 1643.72 | 1204 / 1204 | 0% | 0 | 0 / 0 |
eye | 0% | 0 | 0 / 0 | 100% | 63.09 | 80 / 80 |
lymph node | 0% | 0 | 0 / 0 | 100% | 37.24 | 29 / 29 |
spleen | 100% | 2074.60 | 241 / 241 | 0% | 0 | 0 / 0 |
tonsil | 0% | 0 | 0 / 0 | 100% | 32.29 | 45 / 45 |
ureter | 0% | 0 | 0 / 0 | 100% | 23.83 | 1 / 1 |
muscle | 100% | 2082.67 | 802 / 803 | 0% | 0 | 0 / 0 |
blood vessel | 99% | 1218.09 | 1326 / 1335 | 0% | 0 | 0 / 0 |
heart | 97% | 1395.73 | 837 / 861 | 0% | 0 | 0 / 0 |
peripheral blood | 91% | 1252.29 | 846 / 929 | 0% | 0 | 0 / 0 |
abdomen | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
bone marrow | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
diaphragm | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
gingiva | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
nasal cavity | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
nasopharynx | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
nose | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
placenta | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
spinal column | 0% | 0 | 0 / 0 | 0% | 0 | 0 / 0 |
GO_0030838 | Biological process | positive regulation of actin filament polymerization |
GO_0030307 | Biological process | positive regulation of cell growth |
GO_0031929 | Biological process | TOR signaling |
GO_0006974 | Biological process | DNA damage response |
GO_0046889 | Biological process | positive regulation of lipid biosynthetic process |
GO_0007010 | Biological process | cytoskeleton organization |
GO_0031669 | Biological process | cellular response to nutrient levels |
GO_1905857 | Biological process | positive regulation of pentose-phosphate shunt |
GO_0043066 | Biological process | negative regulation of apoptotic process |
GO_0050731 | Biological process | positive regulation of peptidyl-tyrosine phosphorylation |
GO_0071470 | Biological process | cellular response to osmotic stress |
GO_0010507 | Biological process | negative regulation of autophagy |
GO_0045821 | Biological process | positive regulation of glycolytic process |
GO_0032008 | Biological process | positive regulation of TOR signaling |
GO_0032956 | Biological process | regulation of actin cytoskeleton organization |
GO_0038202 | Biological process | TORC1 signaling |
GO_0071456 | Biological process | cellular response to hypoxia |
GO_0031932 | Cellular component | TORC2 complex |
GO_0005654 | Cellular component | nucleoplasm |
GO_0005829 | Cellular component | cytosol |
GO_0031931 | Cellular component | TORC1 complex |
GO_0005737 | Cellular component | cytoplasm |
GO_0005765 | Cellular component | lysosomal membrane |
GO_0043539 | Molecular function | protein serine/threonine kinase activator activity |
GO_0005515 | Molecular function | protein binding |
Gene name | MLST8 |
Protein name | Target of rapamycin complex subunit LST8 (Protein GbetaL) (TORC subunit LST8) (mLST8) (G protein beta subunit-like) (Mammalian lethal with SEC13 protein 8) Target of rapamycin complex subunit LST8 (TORC subunit LST8) (G protein beta subunit-like) (Gable) (Protein GbetaL) (Mammalian lethal with SEC13 protein 8) (mLST8) |
Synonyms | GBL LST8 |
Description | FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals . mTORC1 is activated in response to growth factors or amino acids . In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) . In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy . The mTORC1 complex is inhibited in response to starvation and amino acid depletion . Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity . In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity . mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive . mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors . mTORC2 promotes the serum-induced formation of stress-fibers or F-actin . mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation . mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422' . mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657' . . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . FUNCTION: Subunit of both mTORC1 and mTORC2, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. In response to nutrients, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy. The mTORC1 complex is inhibited in response to starvation and amino acid depletion. Within mTORC1, LST8 interacts directly with MTOR and enhances its kinase activity. In nutrient-poor conditions, stabilizes the MTOR-RPTOR interaction and favors RPTOR-mediated inhibition of MTOR activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'. . |
Accessions | ENST00000564088.5 [Q9BVC4-1] ENST00000562352.5 ENST00000382450.8 [Q9BVC4-5] H3BSZ4 ENST00000565687.5 H3BPU5 Q9BVC4 ENST00000563179.5 ENST00000569417.6 [Q9BVC4-1] H3BN58 A0A0A0MR05 ENST00000301724.14 ENST00000562851.5 ENST00000565250.1 [Q9BVC4-1] ENST00000567623.6 ENST00000397124.5 [Q9BVC4-1] ENST00000569457.5 I3L2E7 H3BR25 H3BQ74 ENST00000566835.5 ENST00000563107.5 ENST00000567282.5 H3BR38 H3BM50 ENST00000562479.5 ENST00000570224.5 H3BPT1 ENST00000565717.5 |