Integrated analysis of multimodal single-cell data

Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck III, Shiwei Zheng, Andrew Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zager, Paul Hoffman, Marlon Stoeckius, Efthymia Papalexi, Eleni P. Mimitou, Jaison Jain, Avi Srivastava, Tim Stuart, Lamar M. Fleming, Bertrand Yeung, Angela J. Rogers, Juliana M. McElrath, Catherine A. Blish, Raphael Gottardo, Peter Smibert, Rahul Satija

Abstract

The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.

Datasets

1. nygc multimodal pbmc
Metadata
orig.ident
lane
donor_id
time
celltype.l1
celltype.l2
celltype.l3
Phase
cell_type_ontology_term_id
sex_ontology_term_id
self_reported_ethnicity_ontology_term_id
development_stage_ontology_term_id
disease_ontology_term_id
assay_ontology_term_id
organism_ontology_term_id
tissue_ontology_term_id
suspension_type
tissue_type
cell_type
assay
disease
organism
sex
tissue
self_reported_ethnicity
development_stage
P8_39203 cells
P8_08916 cells
P7_08909 cells
P7_78762 cells
P7_38200 cells
P8_78131 cells
P5_77858 cells
P6_37583 cells
P6_77066 cells
P5_07020 cells
P5_36933 cells
P1_06443 cells
P6_06093 cells
P4_75990 cells
P2_05978 cells
P1_35917 cells
P4_35793 cells
P1_75775 cells
P2_35714 cells
P2_75513 cells
P4_05307 cells
P3_35002 cells
P3_74960 cells
P3_04698 cells
Preview
Integrated analysis of multimodal single-cell data

Analyze this study

Source data

https://cellxgene.cziscience.com/collections/b0cf0afa-ec40-4d65-b570-ed4ceacc6813

Alias names

PMID34062119, PMC8238499

Cite this study

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M. and Hoffman, P., 2021. Integrated analysis of multimodal single-cell data. Cell, 184(13), pp.3573-3587. https://doi.org/10.1016/j.cell.2021.04.048